受(shou)鑄錠(ding)(ding)(ding)凝固收縮和(he)鑄型(xing)(xing)受(shou)熱(re)膨(peng)脹的(de)(de)影(ying)響,鑄錠(ding)(ding)(ding)和(he)鑄型(xing)(xing)接觸隨(sui)之發(fa)(fa)生(sheng)變化,即形成氣隙(xi),如(ru)下圖所示。當鑄錠(ding)(ding)(ding)和(he)鑄型(xing)(xing)間氣隙(xi)形成以(yi)后,鑄錠(ding)(ding)(ding)向鑄型(xing)(xing)的(de)(de)傳(chuan)熱(re)方式不只是簡單的(de)(de)傳(chuan)導傳(chuan)熱(re),同時存在小區域的(de)(de)氣體(ti)導熱(re)和(he)輻射傳(chuan)熱(re),導致鑄錠(ding)(ding)(ding)-鑄型(xing)(xing)界(jie)面熱(re)阻(zu)(1/hz)發(fa)(fa)生(sheng)非線性變化。界(jie)面熱(re)量傳(chuan)輸可分(fen)為如(ru)下三個階段。


  階段1: 在(zai)(zai)凝固(gu)(gu)(gu)初期,當表(biao)面(mian)(mian)溫(wen)度(du)略(lve)低于鑄錠液(ye)相線溫(wen)度(du)時(shi),在(zai)(zai)鑄錠外表(biao)面(mian)(mian)會形成一定厚(hou)度(du)的半固(gu)(gu)(gu)態(tai)殼;此(ci)時(shi),在(zai)(zai)液(ye)體靜壓(ya)(ya)力(li)(li)和外界壓(ya)(ya)力(li)(li)(如凝固(gu)(gu)(gu)壓(ya)(ya)力(li)(li)和大氣壓(ya)(ya)等)的作(zuo)用下,鑄錠和鑄型界面(mian)(mian)處于完全接觸狀態(tai),如圖2-84(a)所示,因而界面(mian)(mian)的固(gu)(gu)(gu)固(gu)(gu)(gu)接觸熱(re)量傳輸方式在(zai)(zai)界面(mian)(mian)傳熱(re)過程中起主導作(zuo)用, 此(ci)界面(mian)(mian)宏觀平均(jun)換熱(re)系數hz1可表(biao)示為


   h21=a+b·(P1+P3)  (2-167)


   式中,a和b為(wei)常量(liang);Ph為(wei)液體靜壓(ya)力(li)(li);Ps為(wei)外(wai)界壓(ya)力(li)(li)。


   階段2: 在(zai)給定(ding)外界壓(ya)力(li)和液體靜壓(ya)力(li)條件下,半固(gu)(gu)(gu)態殼(ke)的(de)強度存在(zai)一個(ge)臨(lin)界值σm;隨著凝(ning)(ning)固(gu)(gu)(gu)過(guo)程的(de)進行(xing)(xing),半固(gu)(gu)(gu)態殼(ke)的(de)強度不斷(duan)增大(da)(da);當強度大(da)(da)于臨(lin)界值時(shi),半固(gu)(gu)(gu)態殼(ke)定(ding)型;隨后鑄(zhu)錠(ding)(ding)半固(gu)(gu)(gu)態殼(ke)逐(zhu)漸(jian)與鑄(zhu)型分離(li),固(gu)(gu)(gu)固(gu)(gu)(gu)接(jie)(jie)觸積逐(zhu)漸(jian)減小,氣隙在(zai)界面某些位(wei)置形(xing)成且其(qi)尺寸(cun)逐(zhu)漸(jian)增大(da)(da),導(dao)(dao)致鑄(zhu)錠(ding)(ding)和鑄(zhu)型界面處于半完全接(jie)(jie)觸狀(zhuang)態,如圖2-84(b)所示。在(zai)此(ci)階段,氣隙的(de)尺寸(cun)主要受由液相變固(gu)(gu)(gu)相發生的(de)凝(ning)(ning)固(gu)(gu)(gu)收縮(suo)影(ying)響。盡(jin)管界面還存在(zai)部分固(gu)(gu)(gu)固(gu)(gu)(gu)接(jie)(jie)觸,但界面熱(re)阻隨著凝(ning)(ning)固(gu)(gu)(gu)的(de)進行(xing)(xing)不斷(duan)增大(da)(da),由于鑄(zhu)錠(ding)(ding)和鑄(zhu)型界面接(jie)(jie)觸方(fang)式的(de)變化(hua),界面熱(re)量(liang)傳(chuan)輸(shu)主要由固(gu)(gu)(gu)固(gu)(gu)(gu)接(jie)(jie)觸傳(chuan)熱(re)、輻(fu)射(she)換熱(re)以及氣相導(dao)(dao)熱(re)傳(chuan)熱(re)三(san)分構成,其(qi)中,固(gu)(gu)(gu)固(gu)(gu)(gu)接(jie)(jie)觸傳(chuan)熱(re)仍然(ran)占據界面熱(re)量(liang)傳(chuan)輸(shu)的(de)主導(dao)(dao)地位(wei)。此(ci)階段界面宏觀平均換熱(re)系數hz2可表示為


84.jpg


 此(ci)外,隨著凝固的(de)進行,鑄(zhu)錠(ding)和鑄(zhu)型界(jie)面(mian)(mian)上固固接觸(chu)面(mian)(mian)積(ji)逐漸減小,因而階段(duan)1界(jie)面(mian)(mian)宏觀平(ping)(ping)均(jun)換熱(re)系數(shu)hz1最大,階段(duan)2界(jie)面(mian)(mian)宏觀平(ping)(ping)均(jun)換熱(re)系數(shu)hz2值次之(zhi),階段(duan)3界(jie)面(mian)(mian)宏觀平(ping)(ping)均(jun)換熱(re)系數(shu)hz3值最小,這(zhe)與實(shi)際凝固過(guo)(guo)程中界(jie)面(mian)(mian)換熱(re)系數(shu)逐漸減小的(de)規律相互(hu)印(yin)證。同(tong)時,在鑄(zhu)錠(ding)自身重力的(de)作用下,在鑄(zhu)錠(ding)底部位置,界(jie)面(mian)(mian)半完(wan)全(quan)接觸(chu)狀態始終(zhong)貫穿整個凝固過(guo)(guo)程,這(zhe)與鑄(zhu)錠(ding)頂端界(jie)面(mian)(mian)固固接觸(chu)完(wan)全(quan)消(xiao)失有所不同(tong),如圖2-84(d)所示。


  凝(ning)固壓力在氣隙的(de)(de)形成過(guo)程中扮(ban)演了十(shi)分重(zhong)要的(de)(de)角(jiao)色。研(yan)究表明,增加(jia)凝(ning)固壓力(兆(zhao)帕級)具有(you)明顯(xian)的(de)(de)強化冷卻效果,但在界面熱量傳輸變化的(de)(de)三個階段,加(jia)壓強化冷卻的(de)(de)程度大有(you)不同。


 階(jie)段1:當(dang)壓力(li)在幾兆帕(pa)下(xia)變(bian)化時,由于物性參(can)數(如強度、密度和導(dao)熱系數等(deng))的(de)變(bian)化量可(ke)以(yi)忽略不計,壓力(li)對鑄錠(ding)和鑄型界面完(wan)全(quan)接觸狀(zhuang)態影(ying)響較小(xiao),根據式(shi)(2-166)可(ke)知,壓力(li)對界面宏(hong)觀平均換熱系數的(de)影(ying)響可(ke)以(yi)忽略不計,因此增加壓力(li)對階(jie)段1的(de)界面換熱影(ying)響很小(xiao)。


  階段(duan)2:在此(ci)階段(duan),鑄錠和(he)鑄型界面非(fei)完全接(jie)觸(chu)狀態主(zhu)要由(you)凝固收(shou)縮控制。


  隨著(zhu)壓(ya)(ya)(ya)力(li)的增加(jia),半固(gu)(gu)態殼抵抗(kang)變形(xing)所(suo)需臨界(jie)(jie)(jie)強度增大(da),因而加(jia)壓(ya)(ya)(ya)能(neng)夠(gou)抑制界(jie)(jie)(jie)面(mian)(mian)非(fei)完全(quan)接(jie)觸(chu)狀態的形(xing)成,有助于(yu)將(jiang)界(jie)(jie)(jie)面(mian)(mian)在整個凝(ning)固(gu)(gu)過程中實現保(bao)持固(gu)(gu)固(gu)(gu)接(jie)觸(chu)的狀態。例如(ru),隨著(zhu)壓(ya)(ya)(ya)力(li)的增加(jia),H13表面(mian)(mian)上(shang)的坑變得(de)淺平(ping),且(qie)數量逐漸減(jian)少,意味著(zhu)鑄(zhu)錠(ding)表面(mian)(mian)越來(lai)越光滑,粗糙度減(jian)小,鑄(zhu)錠(ding)鑄(zhu)型界(jie)(jie)(jie)面(mian)(mian)處的固(gu)(gu)固(gu)(gu)接(jie)觸(chu)面(mian)(mian)積增大(da)。根據式(2-168)可知,界(jie)(jie)(jie)面(mian)(mian)宏(hong)觀平(ping)均(jun)傳熱系數與壓(ya)(ya)(ya)力(li)趨于(yu)正比關(guan)系,加(jia)壓(ya)(ya)(ya)能(neng)夠(gou)顯著(zhu)提升此階(jie)段界(jie)(jie)(jie)面(mian)(mian)宏(hong)觀平(ping)均(jun)換熱系數。因此,增加(jia)壓(ya)(ya)(ya)力(li)能(neng)夠(gou)強化(hua)鑄(zhu)錠(ding)鑄(zhu)型間(jian)界(jie)(jie)(jie)面(mian)(mian)固(gu)(gu)固(gu)(gu)接(jie)觸(chu)狀態,抑制由(you)凝(ning)固(gu)(gu)收縮(suo)導(dao)致界(jie)(jie)(jie)面(mian)(mian)氣(qi)隙的形(xing)成,加(jia)快鑄(zhu)錠(ding)鑄(zhu)型界(jie)(jie)(jie)面(mian)(mian)傳遞,強化(hua)冷卻效果明顯。


  階(jie)段3:界(jie)(jie)面(mian)(mian)(mian)氣(qi)(qi)隙(xi)(xi)的(de)(de)長大(da)主(zhu)(zhu)要(yao)受控于固(gu)態收縮。隨著界(jie)(jie)面(mian)(mian)(mian)氣(qi)(qi)隙(xi)(xi)尺寸的(de)(de)變大(da),外界(jie)(jie)逐步與界(jie)(jie)面(mian)(mian)(mian)氣(qi)(qi)隙(xi)(xi)連通,在(zai)壓(ya)力的(de)(de)作(zuo)用下,氣(qi)(qi)體(ti)逐漸進入界(jie)(jie)面(mian)(mian)(mian)氣(qi)(qi)隙(xi)(xi)內(nei),進而導(dao)致界(jie)(jie)面(mian)(mian)(mian)氣(qi)(qi)隙(xi)(xi)與外界(jie)(jie)之間的(de)(de)壓(ya)差趨于零,壓(ya)力對界(jie)(jie)面(mian)(mian)(mian)氣(qi)(qi)隙(xi)(xi)的(de)(de)影響逐漸消失。此階(jie)段,氣(qi)(qi)體(ti)導(dao)熱(re)(re)(re)換(huan)(huan)熱(re)(re)(re)與輻(fu)射換(huan)(huan)熱(re)(re)(re)為(wei)界(jie)(jie)面(mian)(mian)(mian)換(huan)(huan)熱(re)(re)(re)的(de)(de)主(zhu)(zhu)要(yao)方式。其中氣(qi)(qi)體(ti)導(dao)熱(re)(re)(re)換(huan)(huan)熱(re)(re)(re)系數(shu)(hc,g)主(zhu)(zhu)要(yao)由氣(qi)(qi)隙(xi)(xi)內(nei)氣(qi)(qi)體(ti)導(dao)熱(re)(re)(re)系數(shu)(kgap)和界(jie)(jie)面(mian)(mian)(mian)氣(qi)(qi)隙(xi)(xi)尺寸(wgap)決定,作(zuo)為(wei)計算氣(qi)(qi)體(ti)導(dao)熱(re)(re)(re)換(huan)(huan)熱(re)(re)(re)系數(shu)的(de)(de)重要(yao)參(can)數(shu),在(zai)給定壓(ya)力下氣(qi)(qi)體(ti)導(dao)熱(re)(re)(re)系數(shu)(kgap)可由下列公(gong)式進行計算:


式 170.jpg



  綜上所述,在(zai)通過氣體維持壓(ya)力的(de)加壓(ya)條件下,壓(ya)力對界面換(huan)(huan)熱系數的(de)影(ying)響主(zhu)要集中在(zai)界面氣隙形成的(de)第(di)二(er)階(jie)段,即(ji)在(zai)鑄錠殼凝固收縮階(jie)段加壓(ya)通過增大鑄錠殼抵(di)抗變形所需臨界強(qiang)度從而改(gai)善界面換(huan)(huan)熱,起(qi)到強(qiang)化冷卻(que)的(de)作用。


  以H13在0.1MPa、1MPa和(he)2MPa壓(ya)力下凝(ning)固(gu)(gu)為例,其(qi)凝(ning)固(gu)(gu)壓(ya)力通過充入氬氣獲得。為了分析加(jia)壓(ya)對界面氣隙尺寸和(he)換熱(re)方(fang)式(shi)的(de)(de)影(ying)響(xiang)規律,采(cai)用埋設熱(re)電(dian)(dian)偶(ou)以及位(wei)(wei)移(yi)傳(chuan)感(gan)器(qi)實驗,同時(shi)測(ce)(ce)(ce)量(liang)凝(ning)固(gu)(gu)過程中鑄錠(ding)和(he)鑄型(xing)溫(wen)度(du)(du)變(bian)化(hua)(hua)曲線以及其(qi)位(wei)(wei)移(yi)變(bian)化(hua)(hua)曲線,其(qi)中,1#和(he)2#熱(re)電(dian)(dian)偶(ou)分別(bie)測(ce)(ce)(ce)量(liang)離鑄錠(ding)外表面10mm和(he)15mm位(wei)(wei)置(zhi)處(chu)鑄錠(ding)溫(wen)度(du)(du)變(bian)化(hua)(hua)曲線;3#和(he)4#熱(re)電(dian)(dian)偶(ou)分別(bie)測(ce)(ce)(ce)量(liang)鑄型(xing)內表面5mm和(he)10mm位(wei)(wei)置(zhi)處(chu)鑄型(xing)的(de)(de)溫(wen)度(du)(du)變(bian)化(hua)(hua)曲線;位(wei)(wei)移(yi)傳(chuan)感(gan)器(qi)LVDT1和(he)LVDT2的(de)(de)探(tan)頭(tou)位(wei)(wei)置(zhi)離鑄型(xing)內表面徑(jing)向距離均為5mm,分別(bie)插(cha)入鑄錠(ding)和(he)鑄型(xing)中測(ce)(ce)(ce)量(liang)凝(ning)固(gu)(gu)過程中其(qi)位(wei)(wei)移(yi)變(bian)化(hua)(hua)曲線。測(ce)(ce)(ce)量(liang)溫(wen)度(du)(du)和(he)位(wei)(wei)移(yi)變(bian)化(hua)(hua)曲線的(de)(de)裝置(zhi)如圖(tu)2-85所示。


85.jpg



  溫(wen)度(du)測量曲(qu)線如(ru)圖2-86所(suo)示,對于鑄錠溫(wen)度(du)測量曲(qu)線,存(cun)在“陡升”和“振蕩”區域,這(zhe)主要由熱電(dian)偶預熱和澆注引起鋼液湍流分別(bie)造成。隨著凝固過(guo)程的進行(xing),鑄型(xing)溫(wen)度(du)升高(gao),鑄錠溫(wen)度(du)不(bu)斷降(jiang)低。


86.jpg


  因(yin)(yin)鑄(zhu)(zhu)型(xing)(xing)內表(biao)(biao)(biao)面(mian)(mian)(mian)(mian)和(he)鑄(zhu)(zhu)錠外(wai)(wai)表(biao)(biao)(biao)面(mian)(mian)(mian)(mian)溫(wen)度(du)(du)幾乎難以(yi)通過(guo)實驗(yan)進行準確測量,因(yin)(yin)而可通過(guo)數值(zhi)計算的(de)方式(shi)獲得,即(ji)以(yi)測量的(de)鑄(zhu)(zhu)錠和(he)鑄(zhu)(zhu)型(xing)(xing)溫(wen)度(du)(du)變化曲線作為(wei)(wei)輸入(ru)量,采用Beck 非線性求(qiu)解法,計算鑄(zhu)(zhu)型(xing)(xing)內表(biao)(biao)(biao)面(mian)(mian)(mian)(mian)(Tw,i)和(he)鑄(zhu)(zhu)錠外(wai)(wai)表(biao)(biao)(biao)面(mian)(mian)(mian)(mian)溫(wen)度(du)(du)(Twm),由于鑄(zhu)(zhu)錠和(he)鑄(zhu)(zhu)型(xing)(xing)表(biao)(biao)(biao)面(mian)(mian)(mian)(mian)非鏡面(mian)(mian)(mian)(mian),有一(yi)定粗糙度(du)(du),因(yin)(yin)而計算所(suo)得鑄(zhu)(zhu)型(xing)(xing)內表(biao)(biao)(biao)面(mian)(mian)(mian)(mian)(Tw,i)和(he)鑄(zhu)(zhu)錠外(wai)(wai)表(biao)(biao)(biao)面(mian)(mian)(mian)(mian)溫(wen)度(du)(du)(Tw,m)均(jun)為(wei)(wei)宏觀(guan)平(ping)均(jun)表(biao)(biao)(biao)面(mian)(mian)(mian)(mian)溫(wen)度(du)(du),計算結果如圖2-87所(suo)示。當壓力(li)一(yi)定時(shi),在(zai)鑄(zhu)(zhu)錠鑄(zhu)(zhu)型(xing)(xing)界面(mian)(mian)(mian)(mian)換(huan)熱(re)以(yi)及鑄(zhu)(zhu)型(xing)(xing)外(wai)(wai)表(biao)(biao)(biao)面(mian)(mian)(mian)(mian)散(san)熱(re)的(de)影響(xiang)下(xia),鑄(zhu)(zhu)錠外(wai)(wai)表(biao)(biao)(biao)面(mian)(mian)(mian)(mian)溫(wen)度(du)(du)(Tw,i)在(zai)整個凝固過(guo)程中持續(xu)降(jiang)低(di),鑄(zhu)(zhu)型(xing)(xing)內表(biao)(biao)(biao)面(mian)(mian)(mian)(mian)(Tw,m)先增(zeng)加(jia)而后(hou)逐漸降(jiang)低(di)。隨著(zhu)壓力(li)從0.1MPa增(zeng)加(jia)至(zhi)2MPa,鑄(zhu)(zhu)錠外(wai)(wai)表(biao)(biao)(biao)面(mian)(mian)(mian)(mian)降(jiang)溫(wen)速(su)率和(he)鑄(zhu)(zhu)型(xing)(xing)內表(biao)(biao)(biao)面(mian)(mian)(mian)(mian)升(sheng)溫(wen)速(su)率明(ming)顯加(jia)快,表(biao)(biao)(biao)明(ming)加(jia)壓對鑄(zhu)(zhu)錠和(he)鑄(zhu)(zhu)型(xing)(xing)界面(mian)(mian)(mian)(mian)間換(huan)熱(re)速(su)率影響(xiang)顯著(zhu)。


87.jpg


  當壓力一(yi)定時(shi)(shi)(shi),界(jie)面(mian)氣(qi)(qi)(qi)(qi)隙(xi)(xi)(xi)寬度(du)隨(sui)(sui)時(shi)(shi)(shi)間(jian)(jian)的(de)(de)(de)(de)變(bian)(bian)化(hua)(hua)(hua)(hua)關系(xi)可通過(guo)凝(ning)(ning)固(gu)(gu)過(guo)程中鑄錠和(he)鑄型(xing)位(wei)移(yi)變(bian)(bian)化(hua)(hua)(hua)(hua)曲線獲得。基于(yu)位(wei)移(yi)傳感(gan)器(qi)的(de)(de)(de)(de)位(wei)移(yi)測量(liang)結果,所(suo)得界(jie)面(mian)氣(qi)(qi)(qi)(qi)隙(xi)(xi)(xi)寬度(du)隨(sui)(sui)時(shi)(shi)(shi)間(jian)(jian)的(de)(de)(de)(de)變(bian)(bian)化(hua)(hua)(hua)(hua)關系(xi)如圖2-88(a)所(suo)示,在(zai)0.1MPa、1MPa和(he)2MPa下,界(jie)面(mian)氣(qi)(qi)(qi)(qi)隙(xi)(xi)(xi)寬度(du)隨(sui)(sui)時(shi)(shi)(shi)間(jian)(jian)變(bian)(bian)化(hua)(hua)(hua)(hua)規(gui)律(lv)基本相(xiang)似。以2MPa為例,在(zai)凝(ning)(ning)固(gu)(gu)初期,鑄錠、鑄型(xing)和(he)位(wei)移(yi)傳感(gan)器(qi)之間(jian)(jian)存在(zai)巨大溫差,使得位(wei)移(yi)傳感(gan)器(qi)附近的(de)(de)(de)(de)鋼液迅速(su)凝(ning)(ning)固(gu)(gu),以至(zhi)于(yu)無法(fa)測量(liang)階段2 中凝(ning)(ning)固(gu)(gu)收(shou)(shou)縮(suo)導致(zhi)(zhi)的(de)(de)(de)(de)氣(qi)(qi)(qi)(qi)隙(xi)(xi)(xi)寬度(du);同時(shi)(shi)(shi),鑄錠和(he)鑄型(xing)初期溫差巨大,加(jia)速(su)了鑄型(xing)升溫膨脹和(he)鑄錠冷卻收(shou)(shou)縮(suo),因而(er)在(zai)界(jie)面(mian)氣(qi)(qi)(qi)(qi)隙(xi)(xi)(xi)尺寸(cun)(cun)隨(sui)(sui)時(shi)(shi)(shi)間(jian)(jian)變(bian)(bian)化(hua)(hua)(hua)(hua)曲線前段不存氣(qi)(qi)(qi)(qi)隙(xi)(xi)(xi)尺寸(cun)(cun)緩慢增長部(bu)分(fen),取(qu)而(er)代(dai)之的(de)(de)(de)(de)是(shi)氣(qi)(qi)(qi)(qi)隙(xi)(xi)(xi)寬度(du)隨(sui)(sui)時(shi)(shi)(shi)間(jian)(jian)的(de)(de)(de)(de)陡升,而(er)且(qie)氣(qi)(qi)(qi)(qi)隙(xi)(xi)(xi)寬度(du)的(de)(de)(de)(de)陡升很大程度(du)由鑄錠固(gu)(gu)態(tai)(tai)(tai)收(shou)(shou)縮(suo)所(suo)致(zhi)(zhi)。因此(ci),位(wei)移(yi)傳感(gan)器(qi)所(suo)測氣(qi)(qi)(qi)(qi)隙(xi)(xi)(xi)尺寸(cun)(cun)僅包含(han)了固(gu)(gu)態(tai)(tai)(tai)收(shou)(shou)縮(suo)導致(zhi)(zhi)氣(qi)(qi)(qi)(qi)隙(xi)(xi)(xi)形成(cheng)部(bu)分(fen),無因凝(ning)(ning)固(gu)(gu)收(shou)(shou)縮(suo)形成(cheng)氣(qi)(qi)(qi)(qi)隙(xi)(xi)(xi)部(bu)分(fen)。在(zai)低壓下,增加(jia)壓力對(dui)鑄型(xing)和(he)鑄錠的(de)(de)(de)(de)密(mi)度(du)影響(xiang)很小(xiao),幾(ji)乎可以忽略不計,所(suo)以增加(jia)壓力對(dui)鑄型(xing)固(gu)(gu)態(tai)(tai)(tai)收(shou)(shou)縮(suo)導致(zhi)(zhi)氣(qi)(qi)(qi)(qi)隙(xi)(xi)(xi)的(de)(de)(de)(de)尺寸(cun)(cun)影響(xiang)非常小(xiao),所(suo)以在(zai)0.1MPa、1MPa和(he)2MPa下,界(jie)面(mian)氣(qi)(qi)(qi)(qi)隙(xi)(xi)(xi)尺寸(cun)(cun)傳感(gan)器(qi)量(liang)的(de)(de)(de)(de)最大值幾(ji)乎相(xiang)同,約為1.27mm。


88.jpg



  根據氬氣(qi)(qi)導(dao)(dao)熱(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)隨(sui)(sui)壓(ya)力(li)的(de)(de)變(bian)化情(qing)況(kuang)[圖2-89(a)]、凝(ning)固(gu)(gu)(gu)過(guo)(guo)(guo)程(cheng)(cheng)中(zhong)(zhong)(zhong)界(jie)面(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)隙測量曲(qu)線和(he)鑄錠外(wai)表(biao)面(mian)(mian)(mian)(mian)(mian)以(yi)及(ji)鑄型內表(biao)溫度的(de)(de)變(bian)化曲(qu)線,利用式(shi)(2-171)和(he)式(shi)(2-172)可獲得氣(qi)(qi)隙形(xing)成(cheng)(cheng)階段3中(zhong)(zhong)(zhong)界(jie)面(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)體(ti)導(dao)(dao)熱(re)(re)換(huan)(huan)(huan)(huan)熱(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)hc,g和(he)輻(fu)射(she)換(huan)(huan)(huan)(huan)熱(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)hr,以(yi)及(ji)換(huan)(huan)(huan)(huan)熱(re)(re)方式(shi)比例關系(xi)(xi),結果(guo)如圖2-89(b)所(suo)示。輻(fu)射(she)換(huan)(huan)(huan)(huan)熱(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)不(bu)受界(jie)面(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)隙尺(chi)寸(cun)(cun)的(de)(de)影響(xiang),在(zai)整個(ge)凝(ning)固(gu)(gu)(gu)過(guo)(guo)(guo)程(cheng)(cheng)中(zhong)(zhong)(zhong),基本保持(chi)不(bu)變(bian);相(xiang)比之(zhi)下,氣(qi)(qi)體(ti)導(dao)(dao)熱(re)(re)換(huan)(huan)(huan)(huan)熱(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)主(zhu)要(yao)由氣(qi)(qi)體(ti)導(dao)(dao)熱(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)和(he)面(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)隙尺(chi)寸(cun)(cun)共同決定,與氣(qi)(qi)體(ti)導(dao)(dao)熱(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)成(cheng)(cheng)正比,與界(jie)面(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)隙尺(chi)寸(cun)(cun)成(cheng)(cheng)反比,因而在(zai)凝(ning)固(gu)(gu)(gu)過(guo)(guo)(guo)程(cheng)(cheng)中(zhong)(zhong)(zhong)氣(qi)(qi)體(ti)導(dao)(dao)熱(re)(re)換(huan)(huan)(huan)(huan)熱(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)變(bian)化規律與界(jie)面(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)隙尺(chi)寸(cun)(cun)的(de)(de)變(bian)化過(guo)(guo)(guo)程(cheng)(cheng)截然(ran)相(xiang)反,呈現先迅(xun)速減(jian)小(xiao),然(ran)后趨于定值。在(zai)各個(ge)壓(ya)力(li)條件下,隨(sui)(sui)著凝(ning)固(gu)(gu)(gu)的(de)(de)進行,界(jie)面(mian)(mian)(mian)(mian)(mian)總(zong)換(huan)(huan)(huan)(huan)熱(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)(hc,g+h,)迅(xun)速減(jian)小(xiao),然(ran)后趨于穩定,其中(zhong)(zhong)(zhong)輻(fu)射(she)換(huan)(huan)(huan)(huan)熱(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)h1在(zai)總(zong)換(huan)(huan)(huan)(huan)熱(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)中(zhong)(zhong)(zhong)的(de)(de)占比為60%~80%[120],且在(zai)凝(ning)固(gu)(gu)(gu)中(zhong)(zhong)(zhong)后期,0.1MPa、1MPa和(he)2MPa壓(ya)力(li)下,總(zong)界(jie)面(mian)(mian)(mian)(mian)(mian)換(huan)(huan)(huan)(huan)熱(re)(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(shu)基本相(xiang)等。由此可知(zhi),低(di)壓(ya)下,加壓(ya)對由固(gu)(gu)(gu)態(tai)收(shou)縮形(xing)成(cheng)(cheng)界(jie)面(mian)(mian)(mian)(mian)(mian)氣(qi)(qi)隙的(de)(de)尺(chi)寸(cun)(cun)影響(xiang)幾乎可以(yi)忽略不(bu)計。


89.jpg

 根據(ju)以上討(tao)論可知,凝(ning)固結束后,界(jie)(jie)面(mian)(mian)(mian)(mian)換(huan)(huan)(huan)熱(re)(re)主(zhu)(zhu)要(yao)通(tong)過(guo)氣(qi)(qi)體(ti)(ti)(ti)導(dao)熱(re)(re)換(huan)(huan)(huan)熱(re)(re)和(he)(he)輻(fu)射(she)換(huan)(huan)(huan)熱(re)(re)兩種方式(shi)進(jin)行(xing),因加壓(ya)對輻(fu)射(she)換(huan)(huan)(huan)熱(re)(re)系數的(de)(de)影(ying)(ying)響(xiang)(xiang)很小,那(nei)(nei)么加壓(ya)主(zhu)(zhu)要(yao)通(tong)過(guo)改(gai)變(bian)界(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)體(ti)(ti)(ti)導(dao)熱(re)(re)換(huan)(huan)(huan)熱(re)(re)系數,從(cong)而起到(dao)強(qiang)化冷卻的(de)(de)效果。同時,界(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)體(ti)(ti)(ti)導(dao)熱(re)(re)換(huan)(huan)(huan)熱(re)(re)系數主(zhu)(zhu)要(yao)由氣(qi)(qi)體(ti)(ti)(ti)導(dao)熱(re)(re)系數和(he)(he)界(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)體(ti)(ti)(ti)尺(chi)寸(cun)決定,因壓(ya)力(li)從(cong)0.1MPa增(zeng)加至2MPa,氬(ya)氣(qi)(qi)導(dao)熱(re)(re)系數變(bian)化很小,進(jin)一步可知壓(ya)力(li)主(zhu)(zhu)要(yao)通(tong)過(guo)改(gai)變(bian)界(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)隙(xi)宏觀平均尺(chi)寸(cun)影(ying)(ying)響(xiang)(xiang)界(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)體(ti)(ti)(ti)導(dao)熱(re)(re)換(huan)(huan)(huan)熱(re)(re)系數,進(jin)而改(gai)變(bian)界(jie)(jie)面(mian)(mian)(mian)(mian)總換(huan)(huan)(huan)熱(re)(re)系數。此外,壓(ya)力(li)對固態收(shou)縮(suo)導(dao)致(zhi)的(de)(de)界(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)隙(xi)尺(chi)寸(cun)影(ying)(ying)響(xiang)(xiang)幾乎可以忽略不計(ji),那(nei)(nei)么壓(ya)力(li)主(zhu)(zhu)要(yao)通(tong)過(guo)改(gai)變(bian)由凝(ning)固收(shou)縮(suo)導(dao)致(zhi)界(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)隙(xi)的(de)(de)尺(chi)寸(cun),從(cong)而影(ying)(ying)響(xiang)(xiang)界(jie)(jie)面(mian)(mian)(mian)(mian)換(huan)(huan)(huan)熱(re)(re)。為(wei)了評估壓(ya)力(li)對凝(ning)固收(shou)縮(suo)導(dao)致(zhi)界(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)隙(xi)形成的(de)(de)影(ying)(ying)響(xiang)(xiang),利用界(jie)(jie)面(mian)(mian)(mian)(mian)換(huan)(huan)(huan)熱(re)(re)系數對界(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)隙(xi)宏觀平均尺(chi)寸(cun)(wm)進(jin)行(xing)計(ji)算,計(ji)算公(gong)式(shi)如下:


  式中(zhong),hz3為宏(hong)(hong)觀界面(mian)(mian)換熱系數,通過(guo)(guo)將測溫數據作(zuo)為輸入(ru)量,利用Beck 非線性求(qiu)解法獲得,計算流程(cheng)如圖2-78所(suo)示。在(zai)(zai)整個(ge)凝(ning)固(gu)(gu)過(guo)(guo)程(cheng)中(zhong),界面(mian)(mian)氣(qi)隙(xi)宏(hong)(hong)觀平均尺(chi)寸(wm)明(ming)顯小于(yu)因固(gu)(gu)態(tai)收(shou)縮導(dao)致(zhi)的(de)界面(mian)(mian)氣(qi)隙(xi)尺(chi)寸(wgap),同(tong)時,兩者差值(zhi)(wgap-wm)隨著壓(ya)力的(de)增加(jia)而增大(圖2-90).這表明(ming)在(zai)(zai)鑄錠(ding)和鑄型間存在(zai)(zai)一定的(de)固(gu)(gu)-固(gu)(gu)接觸區或(huo)微間隙(xi)區。這些區域(yu)的(de)面(mian)(mian)積隨著壓(ya)力的(de)增大而增大,從而導(dao)致(zhi)傳(chuan)導(dao)換熱的(de)增加(jia),這與鑄錠(ding)表面(mian)(mian)粗糙(cao)度的(de)實(shi)驗(yan)結果(guo)符合(he),也進一步說明(ming)了加(jia)壓(ya)對界面(mian)(mian)氣(qi)隙(xi)尺(chi)寸的(de)影響(xiang)主要集中(zhong)在(zai)(zai)凝(ning)固(gu)(gu)收(shou)縮階(jie)段。


90.jpg


  因此,加(jia)(jia)壓主要通(tong)過抑制(zhi)由凝(ning)固(gu)(gu)(gu)收(shou)縮導致的氣(qi)隙形成,增(zeng)大(da)固(gu)(gu)(gu)固(gu)(gu)(gu)接(jie)觸或微氣(qi)隙的界面(mian)(mian)(mian)面(mian)(mian)(mian)積,強(qiang)化(hua)鑄錠和鑄型(xing)界面(mian)(mian)(mian)完(wan)全接(jie)觸狀(zhuang)態,從而增(zeng)加(jia)(jia)界面(mian)(mian)(mian)氣(qi)體導熱(re)換(huan)熱(re)系數;此外,加(jia)(jia)壓下,界面(mian)(mian)(mian)換(huan)熱(re)系數的增(zeng)加(jia)(jia),加(jia)(jia)快了鑄錠固(gu)(gu)(gu)態收(shou)縮,導致凝(ning)固(gu)(gu)(gu)初期由固(gu)(gu)(gu)態收(shou)縮引起的氣(qi)隙的尺寸快速(su)增(zeng)大(da)。





聯系方式.jpg